第1回RFP 地産・地消型探査技術/課題解決型

^{研究} 現地資源からの建設資材の製造システム

機関名:三菱マテリアル株式会社、北海道大学、山口大学、株式会社大林組、有人宇宙システム株式会社、 株式会社IHI、株式会社IHIエアロスペース

プロジェクト概要

【目的】

ジオポリマー(Geopolymer: GP)の原料物質(アルカリ、ケイ酸)を地球表層の土壌や月面レゴリス(現地資源)から抽出し、その固化体(以下GP固化体)を製造するプロセス、ならびに現地資源から建設資材としての焼結材を迅速製造・利用するプロセスにおける必要エネルギーを導出する。これを元に、地球の一日あたり、1,000 kg以上の月レゴリスを処理し、月面で建設資材を創製するための低エネルギーな手法を提案する。本手法により、従来のコンクリートやセメントに比べてCO2排出を大幅に削減でき、かつ高強度な固化体が作製できる。これらの固化体の性能を活かせる市場の調査および、新たな固化体製法に基づく事業化案の策定を行う。

廃材安定固化 そして月面拠点建設

【成果】

- ①原料の調査・選定(粘土、シラス、模擬月土、スラグ、スラッジ)を行った。
- ②DSC (示差走査熱量分析) およびXRF (蛍光X線分析)、XRD (X線回折) およびMELTS解析等による 原料の溶融特性把握を行った。
- ③GP-A固化試験:焼成した各種原料に水を加え、粒子界面に溶出したアルカリによって原料自身を固化させる手法の検討を行った。
- ④GP-B固化試験:焼成原料から溶脱したアルカリ溶液を 用いて新たな原料を固化させる手法の検討を行った。
- ⑤焼結材熱特性試験:焼結材内部温度計測ならびに各種焼結温度プロファイルの適用による低エネルギー焼結手法の検討を行った。
- ⑥固化体の物性総括と製造所要エネルギーの算定を 行った。
- ⑦新たな固化製法の展開と事業化に向けた検討を行った。

極限環境での長期 安心安全居住を 可能にする

加熱と水和を駆使して砂を固化する