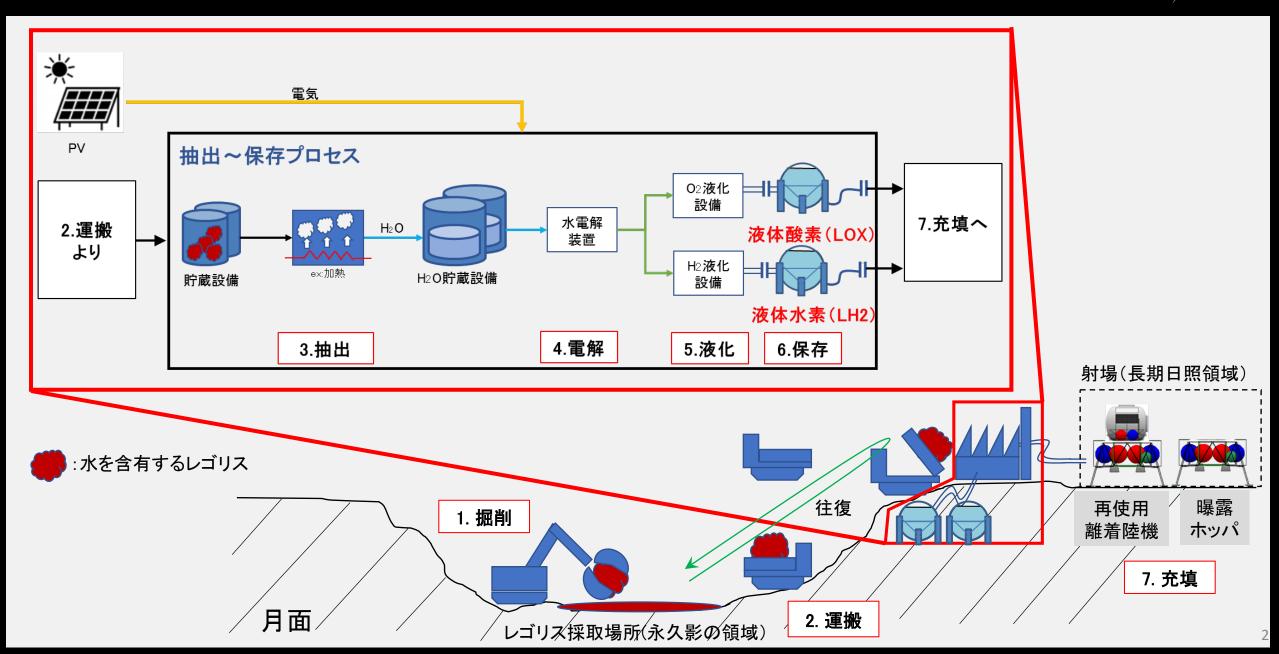


新規重点課題②


月面での水資源利用に向けた必要技術 ~JAXAでの構想と重点募集テーマについて~

宇宙航空研究開発機構(JAXA) 国際宇宙探査センター 事業推進室 中島 潤

月面での水資源を利用した推薬生成の運用コンセプト

月面での水資源利用のプロセス

ゴリスの処理

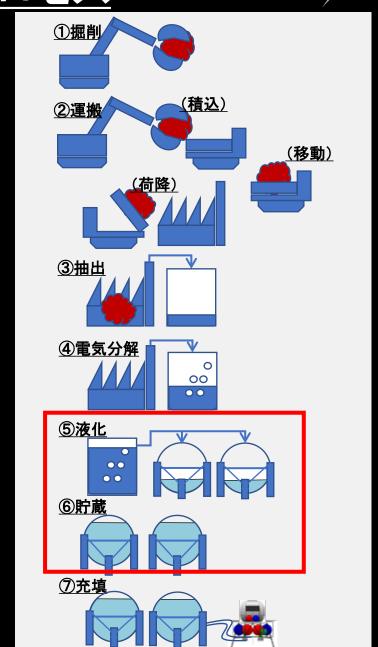
水の

惟薬の処理

◆ ステップ1 : 掘削(Regolith Collection)

◆ ステップ2 : 運搬(Mobility)

◆ ステップ3 : 抽出(Water/Gas Extraction)


◆ ステップ4 : 電解(Electrodizer)

◆ ステップ5 : 液化(Cooling)

◆ ステップ6 : 保存(Storage)

◆ ステップ7 : 充填(Supply)

「リソース(地球から打上げる質量)の低減」に着目し 低減効果の高い「液化」、「保存」に着目して課題を整理

月面での水資源利用に向けた重点募集テーマ

プロセス	中テーマ	小テーマ	関連キーワード
液化	低エネルギでの液化	予冷エネルギの低減	●予冷効率の高い冷媒適用技術●永久影を利用した予冷技術
		液化エネルギの低減	●ブレイトンサイクルを用いた方式とは異なる冷凍方式を 用いた液化技術(異なる熱力学サイクルや磁気を用いた冷凍等)
	電力供給の効率化	軽量な電力供給技術	●月面資源を用いた発電技術●エネルギ(電力)密度(W/kg)の高い発電/蓄電技術
保存	貯蔵システムの軽量化	タンク(容器)の軽量化技術	●非金属材料等の軽量材料(樹脂、膜及び複合材等)や 高性能断熱材を用いた極低温液体の貯蔵技術
		ボイルオフ対策に伴う 物量増加対策	●ボイルオフガス抑制技術●防熱技術●永久影を利用したボイルオフガスの再液化・冷却技術
	材料適合性	酸素下での耐性	●酸素適合性の高い材料
		水素透過	●ガスバリア性の高い材料
		水素脆化	●軽量耐水素脆化材料●液化水素下での材料寿命評価●液化水素下での保全技術(遠隔での検知・診断, 運用管理等)