第2回RFP 地産・地消型探査技術／課題解決型

課題名 マイクロ波凍結乾燥（氷から水をつくる技術）

機関名：マイクロ波化学株式会社、東京工業大学

プロジェクト概要

【目的】

月や火星の地下に存在する水氷において水を効率的に分離する技術として、マイクロ波による凍結乾燥技術の応用を提案する。伝熱では無く、直接氷状態の水分子にマイクロ波を相互作用させることで氷を凍結乾燥する。物質のマイクロ波吸収率（ε”）は固有値であり、水土と水が混ざった状態において、ε”（水土成分）< ε”（氷）の周波数を選定し、マイクロ波によって氷を凍結乾燥することが可能となる。

さらに、半導体型マイクロ波発振器により複数地点から周波数を制御したマイクロ波を照射することにより、ある深さで電磁強度が最大となる設計が可能となる。また、氷存在する領域に選択的にマイクロ波を照射できる。

本コア技術を地球においてマイクロ波凍結乾燥技術として商業化する。

【内容】

マイクロ波の入射エネルギーと物質、系内、コールドトラップの温度変化から条件を最適化した、系内の温度変化を観察し、マイクロ波のエネルギー投入量や、排気速度を調整することによって適切な乾燥が行えるようになる。

電磁波による水融解あるいは束縛水からの氷回収系の原理を解明した。水、含水月レゴリス模擬砂、NaCl水溶液を対象として複素誘電率測定、マイクロ波・高周波照射下における凍結乾燥、in situラマン測定を行い、誘電特性、乾燥特性、水の構造変化から水分子運動性や昇温特性を明らかにした。

さらには、1m級の大きさのマイクロ波凍結乾燥キャビティを作成し、内部で-50℃、1 Paを達成することが出来た。位相制御試験に着いては2つのマイクロ波発振源の位相差によって、加熱される水の位置が異なることを確認した。